# Direct Photon Analyses with PHENIX detector

Norbert Novitzky (Stony Brook University)





# Heavy Ion Collisions

The goal is to melt protons and neutrons into quark-gluon plasma (QGP)



Direct photons

## Heavy Ion Collisions

The goal is to melt protons and neutrons into quark-gluon plasma (QGP)



**Direct photons** 

Photons (contrary to partons) are **color blind probes -** they leave the medium without further interaction

All thermal media emit thermal radiation in form of photons.



#### Thermal Radiation

#### **Black Body Radiation**

- Real or virtual photons
- Spectrum and yield sensitive to temperature Avg. inv. slope  $\propto T_{\rm eff}$ , Yield  $\propto T^3$
- Space-time evolution of matter collective motion:
  - → Doppler shift
  - → anisotropy

Thermal photons from QGP:



Hot medium Large yield



Thermal photons from HG:





Warm medium Moderate yield





#### PHENIX detector

#### Central Arm, $|\eta|$ < 0.35:

- Tracking:
  - Drift Chambers (DC)  $\delta p/p = 0.7 \% + 1.1\%p$
  - Pad Chambers (PC)  $\sigma = \pm 1.7 \text{ mm}$

#### • Electromagnetic Calorimeter:

• 2 PbGl: 0.8 % + 5.9 %/VE

• 6 PbSc: 2.1 % + 8.1 %/VE

#### Particle Identification:

- RICH e<sup>±</sup>
- TOF East and TOF West:
  - $\sigma_T = 100 \text{ps}$
  - $\pi/K p_T < 2.5 \text{ GeV/c}$
  - $K/p p_T < 4.0 \text{ GeV/c}$
- EMCal timing:
  - $\sigma_T = 600 \text{ps}$



Acceptance:  $-0.35 < \eta < 0.35$ ,  $\Delta \varphi - 2 \times 90^{\circ}$ 

#### Forward detectors:

- Muon Tracking, Muon ID
- Forward Electromagnetic Calorimeter (MPC)

## External photon conversion

- Method uses single e<sup>+</sup>/e<sup>-</sup> tracks (2010):
  - thick conversion radius
     ~2.5X<sub>0</sub>% at 60cm
  - conversion point is assumed (Alternative y Tracking Model = ATM)









The  $\pi^0$  is reconstructed with one converted photon and one photon from EMCal.

- Combinatorial background is subtracted
- $\pi^0$  photons are estimated subtracted from inclusive photons

#### Direct Photon Yield - PHENIX



Exponential fit over the low- $p_T$  excess  $T_{inv} = 221 \pm 19(stat) \pm 19 (syst)$  MeV

- External conversion technique
- •PRL104, 132301: p+p and AuAu from virtual photon (Run4 data)
- •PRL 98, 012002: pp in EMCal (Run2003 data)
- •PRD 86, 072008: pp in EMCal (Run2006 data)
- •PRL 109, 152302: AuAu in EMCal (Run2004 data)
- •Using external photon conversion method achieved good agreement with previous results.

# Thermal yield



Thermal photon spectra are extracted by subtracting the N<sub>coll</sub> scaled p+p photon cross section:

 The inverse slope is ~220-260 MeV and comparable within errors in all centralities.

N<sub>part</sub> dependence of integrated yield has same slope even as the integration range is varied

•  $dN/dy \sim N_{part}^{\alpha}$ :  $\alpha$ = **1.48**+/- 0.08 (stat)+/- 0.04 (syst)



#### Collective Motion - Flow



Less yield out-of-plane than in-plane



#### Direct Photon Flow

Can we learn about the medium evolution by looking at the direct photon collective motion?



- Significant direct photon v<sub>2</sub> was measured.
- General trend to note: v<sub>3</sub> ~ v<sub>2</sub>/2

Is there a strong magnetic effect?

#### Direct Photon Puzzle

PRC91, 064904 (2015)



arXiv:1509.07758



#### Large yield

- Emission from the early stage where temperature is high
- Large elliptic flow (v<sub>2</sub>)
  - Emission from the late stage where the collectivity is sufficiently built up

Theoretical models struggle to understand the direct photon data in Au+Au collisions at 200 GeV

#### Theoretical Model



Comparison to three hydrodynamical model calculation (C. Gale et al):

- QGP, w/o viscous
- QGP, w viscous including bulk and shear viscosity
- semi-QGP, w/o viscous - confinement on the photon emission rate
- All calculations also include HG phase emission with blue shift correction

# Jet-Medium interactions



Jets and photons in the created medium:

- Medium induced bremsstrahlung
- Jet-photon conversion hard quark scatters on thermal gluon, leaving a hard photon and thermal quark.



| Photon sources                    | V <sub>2</sub> |              |
|-----------------------------------|----------------|--------------|
| Jet medium induced bremsstrahlung | negative       | non-isolated |
| Jet-photon conversion             | negative       | isolated     |
| Thermal photons                   | positive       |              |



For prompt photons: v<sub>2</sub>~0

13

There is no clear observation of photon from these processes, but it would provide new constraints for the medium

# Some of the remaining questions



- What is the direct photon spectrum shape in low  $p_T$  for p+p?
- Is there hot medium created in p+Au collisions?
- What is the p<sub>T</sub> dependence of v<sub>2</sub> for Cu+Au most central collision? (magnetic field effect)
- What is the p<sub>T</sub> dependence of v<sub>3</sub>, v<sub>4</sub> for Au+Au collision?
   (compare with theoretical models)
- What is the collision energy dependence of the photon production?

# New photon-conversion reconstruction method

- Identify and reconstruct photons via external conversions to e<sup>+</sup>e<sup>-</sup> pairs. The method depend on the conversion geometry.
- Old method uses single e<sup>+</sup>/e<sup>-</sup> tracks (2010):
  - Fixed conversion point at 60cm
- New method uses e<sup>+</sup>e<sup>-</sup> pairs (>2011):
  - Reconstruction of the true conversion radius

#### simulation result



#### Photon reconstruction method

- Identify and reconstruct photons via external conversions to e<sup>+</sup>e<sup>-</sup> pairs. The method depend on the conversion geometry.
- Old method uses single e<sup>+</sup>/e<sup>-</sup> tracks (2010):
  - Fixed conversion point at 60cm
- New method uses e<sup>+</sup>e<sup>-</sup> pairs (>2011):
  - Reconstruction of the true conversion radius



#### simulation result

mass distribution of different conversion radius



- Solve the equation of motions for both tracks to the their intersection (4D lookup table, 2 -> 2 operator)
- Once the conversion radius is found,
   reconstruct the true momentum of the photon

#### First look at the data





Signal is clearly visible in all systems

# Summary

- Direct photons are excellent probes to study the properties of the Quark Gluon Plasma
- The measurement of the large yield and large flow of the direct photons is a challenge to theoretical models
- Extend the measurement to 62.4 and 39 GeV Au+Au collisions
- A new reconstruction method was needed due to the change in detector setup
  - Larger statistics from 2014 Au+Au will provide accurate measurement of  $v_n$  ( $v_2$ ,  $v_3$ ,  $v_4$ ) at low  $p_T$
  - v<sub>n</sub> measurement in most central Cu+Au will provide useful input in understanding of chiral magnetic field effect, if any
  - p+Au results will help to understand properties of the medium created in small systems
  - New p+p results will extend the measurement to lower p<sub>T</sub>

#### **BACKUP**

# Prompt photon production





The invariant cross of direct photon production in p+p collisions (from 20 GeV to 7 TeV) factorizes in dimensional and dimensionless parts, as

$$E\frac{d^3\sigma}{dp^3} = \frac{1}{\sqrt{S}^{n_{eff}(x_T,\sqrt{S})}}G(x_T)$$
 Phys.Rev. D4, 3388 (1971).

- holds for any scale-free theory.
- $n_{eff} = 4 LO$ ,  $n_{eff} > 4 for NLO$

#### p+p √s=200GeV 2006 data



PhysRevD 86 072008

#### Thermal photons at LHC energies



Preliminary results from ALICE exhibited similar tensions with theoretical models trying to describe the yield and flow of photons

# Direct photon HBT promise

PRL 93 162301

Direct photon and hadron HBT will shed light on the time-dependent source geometry and flow

evolution.  $\vec{p}_1$  detector  $\vec{p}_2$  detector

 Large background from charged and neutral pions

Requires very large statistics



